
1

Discrete differential geometry of
tetrahedron tiles and local protein

structure

Plovdiv 2007, Aug.12 - 18, 2007

Naoto Morikawa
(GENOCRIPT)

http://www.genocript.com

This talk is about “discrete differential geometry of tetrahedron tiles and
its application in local protein structure analysis.”

2

What is protein structure?

• Protein is a sequence of amino acids and folds into a unique
3-dim’l structure (native state). That is, “protein ≈ broken
line in R3”

• And its functional properties are largely determined by the
structure

[NOTE] There are 20 amino acids in nature:
 M (methionine), I (isoleucine), S (serine), D (aspartic acid), …

M-I-S-D- · · ·

(36 amino acids)

Amino
acid

Before the talk, let me make a brief summary on protein structure.

Protein is a sequence of …,

That is, one could identify proteins with broken lines in R3

And its functional properties are ...

Shown below is an amino acid sequence and the native state of the
sequence,

where each amino acid is represented by the one-letter code.

Note that …

3

Local protein structures

• We will define “differential structure of broken lines in R3”,
using tetrahedron sequences

Since protein is a kind of “spatial broken line”, we could describe
“local protein structures”, using tetrahedron sequences.

Examples of local protein structure

α-helix β-sheet
(β-strand & β-turn)

Amino
acid

And we will define ...

Since protein is ...

Shown below are examples of local protein structures: alpha-helix and
beta-sheet,

where vertices correspond to amino acids.

4

Outline of the talk

• Introduction to Discrete Diff. Geo. of n-simplices
• 2-dim’l case (DDG of triangles)
• 3-dim’l case (DDG of tetrahedrons)
• Application (local protein structure)

[NOTE] n-simplex := convex hull of affinely independent n+1 points (in Rn)
 In particular, “2-simplex = triangle” and “3-simplex = tetrahedron”.

This is the outline of the talk.

First, I'm going to make a brief introduction to ...

Note that n-simplex is ...

Next, I'll talk about the 2-dim'l case ...

Then, I'll talk about the 3-dim'l case ...

Finally, I'll describe its application in ...

5

Outline of the talk

• Introduction to Discrete Diff. Geo. of n-simplices
• 2-dim’l case (DDG of triangles)
• 3-dim’l case (DDG of tetrahedrons)
• Application (local protein structure)

[NOTE] n-simplex := convex hull of affinely independent n+1 points (in Rn)
 In particular, “2-simplex = triangle” and “3-simplex = tetrahedron”.

Now introduction to …

6

Previous works

• Discrete differential geometry of protein backbone
 - S.Rackovsky & H.A.Scheraga, 1978:
 tangent vector at ri := (ri+1 - ri-1)/|ri+1 - ri-1|

ri

ri-1 ri+1

tangent
vector

[NOTE] Mathematical Science Research Institute (Berkeley, CA, USA)

[NOTE] Backbone structure is usually studied via classification.

• Discrete differential geometry of (protein) surface
 - Discrete Morse theory (R.Forman, 1995)
 - BioGeometry project (H.Edelsbrunner et at., 2000-2006)
 - MATHEON project: discrete surface parametrizations
 (A.I.Bobenko, G.M.Ziegler, 2003-)
 and many more!

See also the MSRI video archive (http://www.msri.org).

Firstly, let me review previous works on DDG and protein structure analysis.

As for DDG of protein backbone, the pioneer work of Rackovsky and
Scheraga in 1978 is known.

In their method, proteins are represented as spatial broken lines and they
defined curvature and torsion at each vertex.

In particular, they defined tangent vector at vertex ri as shown on the right.

But, protein backbone structure is usually studied via classification and
differential geometrical approach is not taken these days.

On the other hand, since proteins are a molecule, they have surface. And a
bunch of works on DDG of surface are known.

To name a few, Forman proposed a discrete version of Morse theory.

And the BioGeometry project at Duke univ. and others studied geometry of
protein in general.

In Germany, there is a MATHEON project on dis. surface parametrizations.

If you visit the homepage of the MSRI, you will find some video lectures on
related topics.

7

Basic ideas

(1) Divide facets of n-cube [0,1]n into (n-1)-simplices along diagonal
(2) Pile up the n-cubes along the direction of (-1, -1, …, -1)
(3) Project the obtained “peaks and valleys” on hyperplane
 { (l1, l2, …, ln) | l1 + l2 + ··· + ln = 0 }

Then, we obtain a “flow” of (n-1)-simplices.

“Division” on 3-cube “Peaks & valleys” “Flow” of 2-simplices

(0,0,0)

(1,0,0)
(0,0,1)

(0,1,0)
trajectory

(-∞, -∞, -∞)

(+∞, +∞, +∞)

This slide shows the basic ideas of my approach. Unlike previous works, n-
cubes are used to construct DDG of (n-1)-simplices.

First, divide ...

As for the division, I will give the definition in a minute.

Shown in the left figure is the division on 3-cube. And each facet is divided
into two triangles.

Next, pile ...

Shown in the middle figure is an example of 3-cubes, piled up from
"+infinity" to "- infinity."

Note that the division of facets makes up a division of the surface of the
obtained Ps&Vs.

Finally, project ...

Then, by projecting the division of the surface onto the hyperplane, we
obtain a "flow" of ...

Shown in the right figure is the flow of 2-simplices obtained from the
Ps&Vs.

As you see, the division of the surface of the Ps&Vs specifies trajectories
of 2-simplices on the hyperplane.

8

• We denote point (l, m) ∈ R2 by monomial x1
lx2

m ∈ Z[x1, x2]:

Notation: monomial representation (1)

is written as

a[x1x2] a[x2x1]

(l, m)

• We denote the triangle of vertices (l, m), (l+1, m), and (l+1, m+1)
∈ R2 by x1

lx2
m[x1x2]:

(l+1, m) (l, m+1)

(l+1, m+1)

x1
lx2

m

x1
l+1x2

m x1
lx2

m+1

x1
l+1x2

m+1

a:=x1
lx2

m

ax1

ax1x2

a:=x1
lx2

m

ax2

ax1x2

Before giving the definition of the facet division, let me explain the notation
used.

In this talk, we denote point ...

For example, vertices of the left square are written as shown on the right.

And we denote the triangle of ..., as shown on the left.

The mirror image a[x2x1] is also defined as shown on the right.

9

• In the same way, we denote the tetrahedron of vertices (l, m, n),
(l+1, m, n), (l+1, m+1, n), and (l+1, m+1, n+1) ∈ R3 by x1

lx2
mx3

n[x1x2x3]

Notation: monomial representation (2)

In particular, 3-cube is divided into six tetrahedrons along diagonal

a:=x1
lx2

mx3
n

ax1

ax1x2 ax1x2x3

a
x1

x2

x3

a[x1x2x3] a[x3x2x1]
ax1x2x3

a[x1x2x3]

a[x2x1x3] a[x1x3x2] a[x3x1x2] a[x2x3x1]

In the same way, we denote ...

In particular, ...

That is, the 3-cube shown on the left is divided into these six tetrahedrons
shown on the right, where the dotted line gives the direction of diagonal.

In the next slide, we use the "division along diagonal" to define the division
of facets.

10

Division of facets

Facet (3-cube)Facet (2-cube)

”Division” on 3-cube “Division” on 4-cube

2 triangles:
 a[x1x2],
 a[x2x1]

6 tetrahedrons:
 a[x1x2x3],
 a[x2x1x3], ···

x1
x2

x1

x2

x3

[NOTE] Facets of n-cubes are (n-1)-cube. And division of (n-1)-
cube along diagonal is given by the set of {a[xixj···xk]}.

• Facets of n-cube [0,1]n are divided into (n-1)! (n-1)-simplices
along diagonal: facet → {a[xixj···xk]}

Now we could define division of facets.

Facets of n-cube ...,

where each component is given by a[xixj...xk] for some i, j, ... , k.

Note that facets of …

Shown on the left is the division on 3-cube. As you see, a facet of 3-cube
is 2-cube and it is divided into two triangles, a[x1x2] and a[x2x1].

Shown on the right is the division on 4-cube. A facet of 4-cube is 3-cube
and it is divided into six tetrahedrons a[x1x2x3], ...

11

Outline of the talk

• Introduction to Discrete Diff. Geo. of n-simplices
• 2-dim’l case (DDG of triangles)
• 3-dim’l case (DDG of tetrahedrons)
• Application (local protein structure)

[NOTE] n-simplex := convex hull of affinely independent n+1 points (in Rn)
 In particular, “2-simplex = triangle” and “3-simplex = tetrahedron”.

Next, let me talk about the 2-dim'l case, that is DDG of triangles.

12

2-dim’l case

“Division” on 3-cube

a

vy

3 upper facets ⇒ 6 triangles

a[x1x2], a[x2x1]

a[x1x3], a[x3x1]

a[x2x3], a[x3x2]

“slant tiles” → “flat tile”

(1) Divide facets of 3-cube [0,1]3 into triangles along diagonal
(2) Pile up the 3-cubes along the direction of (-1, -1, -1)
(3) Project the obtained “peaks and valleys” on hyperplane
 { (l1, l2, l3) | l1 + l2 + l3 = 0 }

Then, we obtain a “flow” of triangles.

x1
vy

a[x1x2]

π(a[x1x2])

x2

x3

π

These are the basic ideas of the 2-dim'l case.

First, divide ...

Shown in the left figure is the division on 3-cube. Since 3-cubes are to be
projected onto a hyperplane, it is enough to consider the "upper" facets.
And these three upper facets are divided into 6 triangles a[x1x2],

Next, pile ...

Then, as shown in the middle figure, we obtain "peaks and valleys" of 3-
cubes. Note that the division of facets makes up a division of the surface of
the Ps&Vs.

Finally, project ...

Then, we obtain a "flow" of ... as shown in the middle figure.

Note that the division of the surface of the Ps&Vs specifies trajectories

For example, blue triangles in the middle figure form a closed trajectory of
length 10.

Shown in the right figure is the projection of triangles.

In the next slide, we use the projection pi to contsruct DDG of triangle tiles.

13

“Slant tiles” over a “flat tile”

···

a[x1x2]

ax1[x2x3]

ax1x2[x3x1]

···

π(a[x1x2])

π

a[x1x2]
x1 x2

x3
ax1[x2x3] ax1x2[x3x1]

• “Slant tiles” over a “flat tile” induce “tangent bundle” TB over
the collection B of all “flat tiles”

• [Def’n] gradient Da[xixj] of “slant tile” a[xixj]
 ⇔ Da[xixj] := xixj (∈ Z[x1, x2])

In particular, TB ≈ {x1x2, x1x3, x2x3} × B

Gradient of “slant tile”

x1x2 x2x3 x1x3

Slant tiles over ...

And here is the definition of gradient.

Gradient Da[xixj] of ... is monomial xixj.

In particular, tangent bundle TB over B is identified with the cartesian
product of ...

Shown on the left is the fiber over a flat tile. And all of these slant tiles are
projected on the same flat tile.

Each of the slant tiles assumes one of the three gradients shown on the
right. For example, the gradient of a[x1x2] is x1x2 and so on.

14

Local flow of “flat tiles”

a[x1x2]
a[x2x3]

• Each “slant tile” defines a local flow of “flat tiles”
• [Def’n] local flow defined by the gradient Da[xixj] of a[xixj]
 ⇔ {π(a/xj[xjxi]), π(a[xixj]), π(axi[xjxi]) }

a[x3x1]

In the case of
Da[xixj] = x1x2

In the case of
Da[xixj] = x2x3

In the case of
Da[xixj] = x1x3

upward downward x1

x2

x3

upward

downward

This slide shows the local flow defined by a slant tile.

Each "slant tile" defines ...

And here is the definition.

Local flow defined by ... is the three consecutive flat tiles of { ... }.

Shown below are the local flows around a flat tile (colored white).

For example, if the gradient of the flat tile is x1x2 as shown in the left figure,
then the "blue" slant tile on this side of the "white" slant tile specifies the
downward flat tile and the "bule" slant tile on the other side specifies the
upward flat tile.

Similarly adjacent blue slant tiles specify the upward and downward flat tiles
in the other cases.

15

“Smoothness condition” of local flow

x1x2

• Each “flat tile” assumes one of two gradient values, which are
determined naturally by the gradient of the preceding tile

x1x2 x2x3

Current tile: π(ax1[x2x1])

or

Preceding tile: π(a[x1x2])

x1x3

or

ax1[x2x1] ax1/x3[x3x2]
x1

x2

x3

a[x1x2]

Next, let's consider smoothness of local flow.

That is, each "flat tile" assumes ...

Shown below is an example of the condition.

Suppose that the gradient of the preceding flat tile is x1x2 and the current
flat tile is on the downward side as shown on the right.

Then, with each of the three gradient values, we could associate a slant tile
over the current flat tile as shown on the left.

In the case of x1x2, the "blue" and "white" slant tiles are connected
smoothly.

In the case of x2x3, the slant tiles are also connected smoothly.

But in the case of x1x3, the slant tiles are not connected smoothly. The
smoothness condition means that the current flat tile assumes one of the
first two values.

16

Example: vector field on “flat tiles”

• “Peaks and valleys” define a “smooth” vector field V on B, where
 V: B → {x1x2, x1x3, x2x3}, V(π(a[xixj])) := Da[xixj] = xixj

Trajectory {t[i] | t[0] = π(a[x1x2])}

b = a/x2
gradient

V(t[0]) = x1x2

V(t[1]) = x1x2

V(t[2]) = x1x2

···

V(t[9]) = x1x3t[0]

 flat tiles

t[0] = π(a[x1x2])

t[1] = π(ax1[x2x1])

t[2] = π(ax1x2[x1x2])

 ···

t[9] = π(a[x1x3])

Pa
Pb

Pc

Vector field V defined by
peaks Pa, Pb, and Pc

c = ax1
2x2/x3

a

This is an example of vector field on flat tiles.

"Peaks and valleys" ..., where vector field V is a function from B to the set
of gradients and flat tile pi(a[xixj]) assumes the gradient Da[xixj] of the
corresponding slant tile a[xixj] on the surface.

Shown on the left is an example of vector field V defined by three peaks.
The value of V on the closed trajectory of blue tiles is shown on the right.

Let's start from flat tile t[0] colored blue and move downward. t[0] is the
image of the blue slant tile a[x1x2] by pi. And the value of V on t[0] is x1x2
as shown in blue. Then, it specifies a local flow of t[9], t[0], and t[1].

Since we move downward, our next tile is t[1] and it is the image of slant
tile ax1[x2x1]. Thus, the value of V on t[1] is also x1x2.

Continueing the process, we obtain the closed trajectory of length 10. And
it satisfies the smoothness condition as you see.

17

Variation of gradient along trajectory

-1 →

• Thanks for the smoothness condition, variation of gradient, i.e.,
the “2nd derivative”, is given as {+1, -1}-valued sequence

• [Def’n] derivative DV of vector field V along trajectory {t[i]}

t[k-1]t[k]

or

-1 -1 → -1 +1 →

DV(t[i-1]) if V(t[i]) = V(t[i-1])

-DV(t[i-1]) else
⇔ DV: B→{+1, -1}, DV(t[i]) :=

In words, change sign if the gradient changes.

Next let's consider variation of gradient along trajectory.

Thanks for the smoothness ...

Derivative DV ... is a function from B to {+1, -1} and its value on t[i] is
defined as follows. That is, if the gradient V(t[i]) of the curremt tile t[i] is
equal to the gradient V(t[i-1]) of the previous tile t[i-1], then the value of
DV on t[i] is equal to the value of DV on t[i-1]. Otherwise, the value is
multiplied by -1.

In words, ...

Shown below is an example. The left figure shows the previous tile t[k-1]
(colored blue) and the right figure shows the current tile t[k] (also colored
blue). Because of the smoothness condition, the current tile t[k] could
assume one of these two blue slant tiles.

Suppose that the value of DV on t[k-1] is -1. Then, in the left case, the
gradient of the "blue" current slant tile is equal to the gradient of the
"white" previous slant tile. And the value of DV on t[k] is -1.

On the other hand, in the right case, the gradient of the "blue" slant tile is
not equal to the gradient of the "white" slant tile. Thus, the value of DV is
changed from -1 to +1.

18

Variation of gradient along trajectory

-1 →

• Thanks for the smoothness condition, variation of gradient, i.e.,
the “2nd derivative”, is given as {+1, -1}-valued sequence

• [Def’n] derivative DV of vector field V along trajectory {t[i]}

t[k-1]t[k]

or

t[k+1]

or

-1 +1 -1 → -1 +1 +1 → -1 -1 → -1 +1 →

DV(t[i-1]) if V(t[i]) = V(t[i-1])

-DV(t[i-1]) else
⇔ DV: B→{+1, -1}, DV(t[i]) :=

In words, change sign if the gradient changes.

Let's choose the right case and continue the process.

The left figure shows the next tile t[k+1] (colored blue). Again, because of
the smoothness condition, t[k+1] could assume one of the two blue slant
tiles.

In the left case, the gradient of the "blue" next slant tile is not equal to the
gradient of the "white" current slant tile. And the value of DV is changed
from +1 to -1.

On the other hand, in the right case, the gradient of the "blue" slant tile is
equal to the gradient of the "white" slant tile. Thus, the value of DV on t[k]
is +1.

In either case, we obtain a binary valued sequence of length three, which
describes variation of gradient along the trajectory.

19

Example: variation of gradient (1)

• Shape of a trajectory could be encoded by the “2nd derivative”
along the trajectory:

Trajectory defined by three peaks Pa, Pb, and Pc

b = a/x2 gradient

V(t[0]) = x1x2

V(t[1]) = x1x2

V(t[2]) = x1x2

 ···

V(t[9]) = x2x3t[0]

 flat tiles

t[0] = π(a[x1x2])

t[1] = π(ax1[x2x1])

t[2] = π(ax1x2[x1x2])

 ···

t[9] = π(b[x2x3])

c = ax1
2x2/x3

a “2nd

derivative”

DV(t[0]) = -1

DV(t[1]) = -1

DV(t[2]) = -1

···

DV(t[9]) = +1

(down)

(down)

(down)

···

(up)

⇔ -1 -1 -1 +1 -1 +1 +1 +1 -1 +1

As an example of variation of gradient, let's consider encoding of shapes.

Shape of a trajectory could ...

And the hexagon shown on the left is encoded into the binary sequence of
length 10 on the right, using the trajectory shown below.

Shown below is the example we considered before: the closed trajectory
defined by three peaks.

First, the gradient of the first two flat tiles t[0] and t[1] are given as shown
in blue.

Suppose that the "2nd derivative" of t[0] is -1. Then, since the first two
tiles have the same gradient, the "2nd derivative" of t[1] is also -1. When
the gradient changes over t[3], the "2nd derivative" of t[3] becomes +1
accordingly.

Note that there is a one-to-one correspondence between the "2nd
derivative" and "up and down" along trajectory.

20

Example: variation of gradient (2)

• We may need more than one local “peaks and valleys” to cover
a trajectory as in the case of Riemannian manifold

Trajectory defined by two set of “peaks & valleys”

⇔ -1 -1 -1 +1 -1 -1 -1 +1 +1 -1

t[0]

a

c = ax1
2x2/x3

t[3]

c

b = ax1
2x3/x2t[5] is buried

under Pa

Pa

t[5]

Let's consider another example.

We may need ...

And the trajectory shown on the left is encoded into the binary sequence
on the right, using the two sets of "peaks and valleys" shown below.

The first five flat tiles t[0], ..., t[4] of the trajectory are encoded using the
left Ps&Vs. But the 6-th tile t[5] colored blue is buried under peak Pa as
shown in the middle figure.

Thus we need another set of Ps&Vs shown on the right to encode the rest
of the trajectory.

21

“Division of facets” revisited

• “Division along diagonal” is equal to division along conjugate lattice

Trajectory specified by
conjugate lattice

Standard lattice Conjugate lattice

x1

x2

x3

y1

y2

y3

y1 := x2x3

y2 := x1x3

y3 := x1x2

x1

x2

x3

Facets of n-cube [0,1]n are divided into (n-1)-simplices along diagonal:
facet → {a[xixj···xk]}

↔ (1, 0, 0)

↔ (0, 1, 0)

↔ (0, 0, 1)

↔ (0, 1, 1)

↔ (1, 0, 1)

↔ (1, 1, 0)

Before moving to the 3-dim'l case, let me show another view point of the
"division of facets.“

That is, "division along diagonal" ...

Recall that facets of n-cube ...

Shown on the left is the standard lattce generated by x1, x2, and x3.

So far, we have used the standard lattice only. And "peaks and valleys" are
a cone of the standard lattice generated by its peaks.

On the other hand, the conjugate lattice shown on the right is the lattice
geneated by y1, y2, and y3, which are defined as shown below.

Here we used the monomial notation and y1, y2, and y3 correspond to vector
(0,1,1), (1,0,1), and (1,1,0) respectively.

Then, as shown in the middle figure, we could use a cone of the conjugate
lattice to specify an ("affine") trajectory. In this case, the closed trajectory
of blue tiles is specified by the gray cone.

Moreover, one could consider "algebra of closed affine trajectories." But it
is not today's subject.

22

Summary of 2-dim’l case

π

• Discrete differential geometry of triangles
 Base space: B = the collection of all “flat tiles”
 Tangent bundle: TB ≈ {x1x2, x1x3, x2x3} × B

• Application: encoding of 2-dim’l shapes
 Shape of a trajectory
 ⇔ {+1, -1}-valued sequence
 (Change sign if the gradient changes.)

x1x2

x2x3

x1x3

B

⇔ -1 -1 -1 +1 -1 -1 -1 +1 +1 -1

⇔ -1 -1 -1 +1 -1 +1 +1 +1 -1 +1

Examples

Fiber of TB

This is the summary of the 2-dim'l case.

Firstly, DDG of triangles is proposed.

In the construction, base space B is given as the collection of all "flat
tiles". And tangent bundle TB over B is identified with the cartesian
product of monimials { ... } and B.

Shown on the right is fiber of TB, where slant tiles are mapped on a flat tile
by projection pi.

Secondly, as an application, encoding of 2-dim'l shapes is proposed.

In the method, the shape of a trajectory is encoded into a {+1, -1}-valued
sequence. The encoding rule is, change sign if the gradient changes.

Shown below are examples. These two trajectories on the left are encoded
into the binary sequence on the right respectively.

23

Outline of the talk

• Introduction to Discrete Diff. Geo. of n-simplices
• 2-dim’l case (DDG of triangles)
• 3-dim’l case (DDG of tetrahedrons)
• Application (local protein structure)

[NOTE] n-simplex := convex hull of affinely independent n+1 points (in Rn)
 In particular, “2-simplex = triangle” and “3-simplex = tetrahedron”.

Next, let me talk about the 3-dim'l case, that is DDG of tetrahedrons.

24

3-dim’l case

“Division” on 4-cube

4 upper facets

⇒ 24 tetrahedrons

a[x1x2x3], … , a[x1x2x4], … ,

a[x1x3x4], … , a[x2x3x4], …

“slant tiles” → “flat tile”

(1) Divide facets of 4-cube [0,1]4 into tetrahedrons along diagonal
(2) Pile up the 4-cubes along the direction of (-1, -1, -1, -1)
(3) Project the obtained “peaks and valleys” on hyperplane
 { (l1, l2, l3, l4) | l1 + l2 + l3 + l4 = 0 }

Then, we obtain a “flow” of tetrahedrons.

a[x1x2x3]

π(a[x1x2x3])

π

“Flow” defined by
three “peaks”

x2x3x4

x1x2x4

x1x3x4

These are the basic ideas of the 3-dim'l case.

First, divide ...

Shown in the left figure is the division on 4-cube. Since 4-cubes are to be
projected onto a hyperplane, it is enough to consider the "upper" facets.
And these four upper facets are divided into 24 tetrahedrons a[x1x2x3],

Next, pile ...

And we obtain "peaks and valleys" of 4-cubes.

Finally, project ...

Then, we obtain a "flow" of ... as shown in the middle figure, which is
the "flow" defined by three peaks x1x2x4, x2x3x4, and x1x3x4.
As you see, the division of the surface of the Ps&Vs specifies
trajectories of tetrahedrons on the hyperplane. For example, the blue
tiles form a closed trajectory of length six.

Shown in the right figure is the projection of tetrahedrons. In the next slide,
we use the projection pi to contsruct DDG of tetrahedron tiles.

25

“Slant tiles” over a “flat tile”

···

a/x4[x4x1x2]

a[x1x2x3]

ax1[x2x3x4]

ax1x2[x3x4x1]

···

π(a[x1x2x3])

π

a/x4[x4x1x2]

• “Slant tiles” over a “flat tile” induce “tangent bundle” TB over the
collection B of all “flat tiles”

• [Def’n] gradient Da[xixjxk] of a[xixjxk]
 ⇔ Da[xixjxk] := xixjxk (∈ Z[x1, x2, x3])

In particular, TB ≈ {x1x2x3, x1x2x4, x1x3x4, x2x3x4} × B

Gradient of “slant tile”

x1x2x4

a[x1x2x3]

x1x2x3

ax1[x2x3x4]

x2x3x4

ax1x2[x3x4x1]

x1x3x4

x1 x2

x4 x3

(Arrow shows the direction of “down”)

As in the case of 2-dim, slant tiles over ...

Gradient Da[xixjxk] of a[xixjxk] is monomial xixjxk.

In particular, tangent bundle TB over B is identified with the cartesian
product of ...

Shown on the left is the fiber over a flat tile. And all of these slant tiles are
projected on the same flat tile.

Each of the slant tiles assumes one of the four gradients shown on the
right, where the arrow shows the direction of "down." For example, gradient
of a/x4[x4x1x2] is x1x2x4 and so on.

26

Local flow of “flat tiles”

• Each “slant tile” defines a local flow of “flat tiles”
• [Def’n] local flow defined by the gradient Da[xixjxk] of a[xixjxk]
 ⇔ {π(a/xk[xkxixj]), π(a[xixjxk]), π(axi[xjxkxi]) }

In the case of
Da[xixixk] = x1x2x4

a[x1x2x3] ax1[x2x3x4] ax1x2[x3x4x1]

In the case of
Da[xixixk] = x1x2x3

In the case of
Da[xixixk] = x2x3x4

In the case of
Da[xixixk] = x1x3x4

upward downward

a/x4[x4x1x2]

x1 x2

x4 x3

(Arrow shows the direction of “down”)

upward

downward

This slide shows the local flow defined by a slant tile.

Each "slant tile" defines ...

And here is the definition.

Local flow defined by ... is the three consecutive flat tiles of { ... }.

Shown below are the local flows around a flat tile (colored white).

For example, if the gradient of the flat tile is x1x2x4 as shown in the left
figure, then the "blue" slant tile on this side of the "white" slant tile
specifies the upward flat tile and the "bule" slant tile on the other side
specifies the downward flat tile.

Similarly adjacent blue slant tiles specify the upward and downward flat tiles
in the other cases.

27

x2x3x4

“Smoothness condition” of local flow

x1x3x4

• Each “flat tile” assumes one of two gradient values, which
are determined by the gradient of the preceding tile

Current tile: π(ax3[x4x1x3])

or

Preceding tile: π(a[x3x4x1])

or

ax3[x4x1x3]

x1x3x4 x1x2x4

x1 x2

x4 x3

x1x2x3

or

ax3/x2[x2x4x1]

a[x3x4x1]

Next, let's consider smoothness of local flow.

Each "flat tile" assumes ...

Shown below is an example of the condition. Suppose that the gradient of
the preceding flat tile is x1x3x4 and the current flat tile is on the downward
side as shown on the right.

Then, with each of the four gradient values, we could associate a slant tile
over the current flat tile as shown on the left.

In the case of x1x3x4, the "blue" and "white" slant tiles are connected
smoothly. In the case of x1x2x4, the slant tiles are also connected smoothly.

But in the case of x2x3x4, the slant tiles are not connected smoothly. In the
case of x1x2x3, the slant tiles are not connected smoothly neither.

The smoothness condition means that the current flat tile assumes one of
the first two values.

As you see, regardless of the dimension, there are only two possible values
for each flat tile.

28

Example: vector field on “flat tiles”

• “Peaks and valleys” define “smooth” vector field V on B, where
 V: B → {x1x2x3, x1x2x4, x1x3x4, x2x3x4},
 V(π(a[xixjxk])) := Da[xixjxk] = xixjxk

Trajectory {t[i] | t[0] = π(a[x3x4x1])}

gradient

V(t[0]) = x1x3x4

V(t[1]) = x1x2x4

V(t[2]) = x2x3x4

···

V(t[5]) = x2x3x4

 flat tiles

t[0] = π(a[x3x4x1])

t[1] = π(b[x2x4x1])

t[2] = π(b[x2x4x3])

···

t[5] = π(a[x3x4x2])“Flow” of “flat tiles”
defined by peaks a=x1x2x4,

b=x1x3x4 and c=x2x3x4

x1 x2

x4 x3

c

a

b

b

t[0]

t[1]

c

a

This is an example of vector field on flat tiles.

"Peaks and valleys" ...,

where vector field V is a function from B to the set of gradients and flat
tile pi(a[xixjxk]) assumes the gradient of the corresponding slant tile
a[xixjxk] on the surface.

Shown on the left is an example of flow defined by three peaks. The value
of V on the closed trajectory of blue tiles is shown on the right.

Let's start from flat tile t[0] colored blue and move downward. t[0] is the
image of the blue slant tile a[x3x4x1] by pi. And the value of V on t[0] is
x1x3x4 as shown in blue. Then, it specifies a local flow of t[5], t[0], and t[1].
Since we move downward, our next tile is t[1] and it is the image of slant
tile b[x2x4x1]. Thus, the value of V on t[1] is also x1x2x4.

Continueing the process, we obtain the closed trajectory of length six. And
it satisfies the smoothness condition as you see.

29

Variation of gradient along trajectory

-1 →

• Thanks for the smoothness condition, variation of gradient, i.e.,
the “2nd derivative”, is given as {+1, -1}-valued sequence

• [Def’n] derivative DV of vector field V along trajectory {t[i]}

t[k-1]t[k]

or

-1 -1 → -1 +1 →

DV(t[i-1]) if V(t[i]) = V(t[i-1])

-DV(t[i-1]) else
⇔ DV: B→{+1, -1}, DV(t[i]) :=

In words, change sign if the gradient changes.

Next let's consider variation of gradient along trajectory.

Thanks for the smoothness ...

Derivative DV ... is a function from B to {+1, -1} and its value on t[i] is
defined as follows. That is, if the gradient V(t[i]) of the curremt tile t[i] is
equal to the gradient V(t[i-1]) of the previous tile t[i-1], then the value of
DV on t[i] is equal to the value of DV on t[i-1]. Otherwise, the value is
multiplied by -1.

In words, ...

Shown below is an example. The left figure shows the previous tile t[k-1]
(colored blue) and the right figure shows the current tile t[k] (also colored
blue). Because of the smoothness condition, the current tile t[k] could
assume one of these two blue slant tiles.

Suppose that the value of DV on t[k-1] is -1. Then, in the left case, the
gradient of the "blue" current slant tile is equal to the gradient of the
"white" previous slant tile. And the value of DV on t[k] is -1. On the other
hand, in the right case, the gradient of the "blue" slant tile is not equal to
the gradient of the "white" slant tile. Thus, the value of DV is changed from
-1 to +1.

30

Variation of gradient along trajectory

-1 →

• Thanks for the smoothness condition, variation of gradient, i.e.,
the “2nd derivative”, is given as {+1, -1}-valued sequence

• [Def’n] derivative DV of vector field V along trajectory {t[i]}

t[k-1]t[k]

or

t[k+1]

or

-1 +1 -1 → -1 +1 +1 → -1 -1 → -1 +1 →

DV(t[i-1]) if V(t[i]) = V(t[i-1])

-DV(t[i-1]) else
⇔ DV: B→{+1, -1}, DV(t[i]) :=

In words, change sign if the gradient changes.

Let's choose the right case and continue the process.

The left figure shows the next tile t[k+1] (colored blue). Again, because of
the smoothness condition, t[k+1] could assume one of the two blue slant
tiles.

In the left case, the gradient of the "blue" next slant tile is not equal to the
gradient of the "white" current slant tile. And the value of DV is changed
from +1 to -1. On the other hand, in the right case, the gradient of the
"blue" slant tile is equal to the gradient of the "white" slant tile. Thus, the
value of DV on t[k+1] is +1.

In either case, we obtain a binary valued sequence of length three, which
describes variation of gradient along the trajectory.

31

Example: variation of gradient

• Shape of a trajectory could be encoded by the “2nd derivative”
along the trajectory:

Trajectory defined by three peaks

“2nd

derivative”

DV(t[0]) = -1

DV(t[1]) = +1

DV(t[2]) = -1

···

DV(t[5]) = +1

(down)

(up)

(down)

···

(up)

⇔ -1 +1 -1 +1 -1 +1

gradient

V(t[0]) = x1x3x4

V(t[1]) = x1x2x4

V(t[2]) = x2x3x4

···

V(t[5]) = x2x3x4

 flat tiles

t[0] = π(a[x3x4x1])

t[1] = π(b[x2x4x1])

t[2] = π(b[x2x4x3])

···

t[5] = π(a[x3x4x2])

b

t[0]

t[1]

c

a

As an example of variation of gradient, let's consider encoding of shapes.

Shape of a trajectory could ...

And the shape shown above is encoded into the binary sequence of length
six on the right, using the trajectory shown below.

Shown below is the example we considered before: the closed trajectory
defined by three peaks.

First, the gradient of the first two flat tiles t[0] and t[1] are given as shown
in blue.

Suppose that the "2nd derivative" of t[0] is -1. Then, since the first two
tiles t[0] and t[1] assume different gradient values, the "2nd derivative" of
t[1] becomes +1. The third tile t[2] assumes yet another gradient and the
"2nd derivative" of t[2] becomes -1 accordingly.

Note that there is a one-to-one correspondence between the "2nd
derivative" and "up and down" along trajectory.

32

More about the tetrahedrons (1)

• Rhombic dodecahedron is divided into 24 of the tetrahedrons,
which consist of two long edges and four short edges

Trajectory defined
by three “peaks”

⇔ -1 -1 +1 -1 +1 +1 -1 -1 +1 +1 -1 +1

 -1 -1 +1 -1 +1 +1 -1 -1 +1 +1 -1 +1

π(x1x2)

π(x2x3)
π(x3x4)

Ratio of length
= √3/2

Two long edges Four short edges

[NOTE] A 4-cube is mapped onto a rhombic dodecahedron by projection π.

• Encoding of rhombic dodecahedron by a sequence of the tetrahedrons

Now let me talk more about the tetrahedron used.

Firstly, a rhombic dedecahedron is ...

As shown below, the tetrahedron has two long edges and four short edges,
whose ratio of length is sqrt(3)/2.

Note that a 4-cube is ...

Secondly, encoding of ... is obtained as follows:

Shown on the left is a trajectory defined by three "peaks" x1x2, x2x3, and
x3x4. Starting from the blue flat tile, we obtain a binary sequence of length
24 along the trajectory, which is a code of rhombic dedecahedron. (The
code is not unique.)

33

More about the tetrahedrons (2)

• Any trajectory of tetrahedrons could be implemented by
Origami folding

Paper template

Tab to put
glue on

•
•
•

Sequence of
tetrahedrons

Rhombic
dodecahedron

Paper
folding

Sequence
folding

Example

(Connected via long edges)

24 rows of
triangles

b

a

a/b = √3/2

Finally, any trajectory of ...

As an example, let's consider rhombic dodecahedron again.

Shown on the left is the paper template used. "a" is the length of the
shorter edge and "b" is that of the longer edge. (Don't forget tabs to put
glue on!)

Folding the paper along the lines somehow, we obtain a sequence of 24
tetrahedrons. Successive tetrahedrons are connected via long edges and
the sequence has a rotational freedom around the long edges.

Then, folding the sequence somehow again, we obtain a rhombic
dodecahedron. (In this case, there are more than one pattern of sequence
folding.)

34

Summary of 3-dim’l case

π

• Discrete differential geometry of tetrahedrons
 Base space: B = the collection of all “flat tiles”
 Tangent bundle:
 TB ≈ {x1x2x3, x1x2x4, x1x3x4, x2x3x4} × B

• Application: encoding of 3-dim’l shapes
 Shape of a trajectory
 ⇔ folding of a tetrahedron sequence
 ⇔ {+1, -1}-valued sequence
 (Change sign if the gradient changes.)

x1x2x4

x1x2x3

x2x3x4

x1x3x4

Examples

Fiber of TB

⇔ -1 +1 -1 +1 -1 +1 ⇔ -1 -1 +1 -1 +1 +1 -1 -1 +1 +1 -1 +1

 -1 -1 +1 -1 +1 +1 -1 -1 +1 +1 -1 +1

“flat
tile”

This is the summary of the 3-dim'l case.

Firstly, DDG of tetrahedrons are proposed.

In the construction, base space B is given as the collection of all "flat
tiles". And tangent bundle TB over B is identified with the cartesian
product of monimials { ... } and B.

Show on the right is fiber of TB, where slant tiles are mapped on a flat tile
by projection pi.

Secondly, as an application, encoding of 3-dim'l shapes are proposed.

In the method, the shape of a trajectory is obtained by folding a tetrahedron
sequence, and encoded into a {+1, -1}-valued sequence. The encoding rule
is, change sign if the gradient changes.

Shown below are examples. These two trajectories are encoded into the
binary sequence on the right respectively.

35

Outline of the talk

• Introduction to Discrete Diff. Geo. of n-simplices
• 2-dim’l case (DDG of triangles)
• 3-dim’l case (DDG of tetrahedrons)
• Application (local protein structure)

[NOTE] n-simplex := convex hull of affinely independent n+1 points (in Rn)
 In particular, “2-simplex = triangle” and “3-simplex = tetrahedron”.

Finally, let me talk about application in local protein structure analysis.

36

Encoding of local protein structure

Folding with trans. & rot.

(13 tiles)

• To encode the shape of proteins (, i.e., spatial broken lines), we
permit “translation and rotation” during the folding process of
tetrahedron sequence

α-helix
(13 amino acids)

Simple folding

(85 tiles)

Amino
acid

Example

Our objective is encoding of local protein structure.

And to encode the shape of ...

As an example, let's consider the alpha-helix of length 13 shown in the
middle figure.

By simple folding, we obtain the red object of 85 tetrahedron tiles shown on
the left. But the object is more complicated than the original alpha-helix.

On the other hand, if we permit translation and rotation, we would obtain
the object of 13 tetrahedron tiles shown on the right. And it will turn out
that we could capture the local features of proteins by the discontinuous
tetrahedron sequence.

The following slides illustrate the coding algorithm briefly.

37

• Let’s encode the shape of protein {AA[i] | -2 ≤ i ≤ 2} using
 tetrahedron sequence {t[i] | -2 ≤ i ≤ 2} shown below:

Folding with trans. & rot. (Step 0)

Tetrahedron seq. {t[i]}Protein {AA[i]}

AA[0]

AA[-2] AA[2] t[0]

t[-2]

t[2]

Init.
tile

t[-1]

t[1]

Spatial
alignmentAA[-1]

AA[1]

Let's encode ...

Shown on the left is the protein of length five. And we encode the protein
using the five tetrahedrons shown on the right. We start encoding from the
middle amino acid AA[0] (colored blue).

38

AA[0]
AA[-2]

AA[2]

AA[-1]

AA[1]

• Align tetrahedron t[0] with amino acid AA[0] and set initial values

 Then, “initial position” of adjacent tetrahedrons t[±1] are also
determined, which are moved to the position of AA[±1] later.

Folding with trans. & rot. (Step 1)

Tetrahedron seq. {t[i]}Protein {AA[i]}

t[0]

t[-2]

t[2]

t[-1]

t[1]

Spatial
alignment

x1x2x4

Grad. 2nd deri.

“D” (=-1)

Adjacent
tetra.s

First, align tetrahedron t[0] with ...

Then, "initial position" ...

The "blue" tetrahedron is aligned with AA[0] as shown on the left. And
assign any values of gradient and 2nd derivative to the initial tile t[0] as
shown on the right: in this example, x1x2x4 and "D".

The "white" tetrahedrons shown in the left figure are the adjacent
tetrahedrons t[1] and t[-1]. They are moved to the position of AA[1] and
AA[-1] respectively later.

39

AA[0]
AA[-2]

AA[2]

AA[-1]

AA[1]

• Assign gradient to tetrahedrons t[±1], considering the direction of
amino acid AA[±2]

 Then, “initial position” of adjacent tetrahedrons t[±2] are also
determined, which are moved to the position of AA[±2] later.

Folding with trans. & rot. (Step 2)

Tetrahedron seq. {t[i]}Protein {AA[i]}

t[0]

t[-2]

t[2]

t[-1]

t[1]

Spatial
alignment

x1x2x4

Grad.

“D” (=-1)

2nd deri.

x1x2x4 “D” (=-1)

x2x3x4 “U” (=+1)

Next, assign gradient to tetrahedron ...

Then, "initial position" ...

The "blue" tetrahedrons are assigned gradient (bold edge) as shown on the
left. And their values are shown on the right. For example, t[1] is assigned
gradient x2x3x4 and the 2nd derivative becomes "U" since the gradient
value changes.

The "white" tetrahedrons at ends shown in the left figure are the adjacent
tetrahedrons t[2] and t[-2]. They are moved to the position of AA[2] and
AA[-2] respectively later.

40

AA[0]
AA[-2]

AA[2]

AA[-1]

AA[1]

• Translate tetrahedron t[±1] to the position of AA[±1]

 Adjacent tetrahedrons t[±2] are also translated with t[±1].

Folding with trans. & rot. (Step 3)

Tetrahedron seq. {t[i]}Protein {AA[i]}

t[0]

t[-2]

t[2]

t[-1]

t[1]

Spatial
alignment

x1x2x4

Grad.

“D” (=-1)

2nd deri.

x1x2x4 “D” (=-1)

x2x3x4 “U” (=+1)

Then, translate tetrahedron ...

Adjacent tetrahedrons ...

The "blue" tetrahedrons are now at the position of AA[1] and AA[-1] as
shown on the left.

The "white" tetrahedrons at ends are also translated with the "blue" ones.

41

AA[0]
AA[-2]

AA[2]

AA[-1]

AA[1]

• Rotate tetrahedron t[±1] at the position of AA[±1] so that the “bold
edges” become parallel to the direction from AA[0] to AA[±2]

 Adjacent tetrahedrons t[±2] are also rotated with t[±1].

Folding with trans. & rot. (Step 4)

Tetrahedron seq. {t[i]}Protein {AA[i]}

t[0]

t[-2]

t[2]

t[-1]

t[1]

Spatial
alignment

x1x2x4

Grad.

“D” (=-1)

2nd deri.

x1x2x4 “D” (=-1)

x2x3x4 “U” (=+1)

Next, rotate tetrahedron ...

Adjacent tetrahedrons ...

The "blue" tetrahedrons are rotated at the position of AA[1] and AA[-1] as
shown on the left.

The "white" tetrahedrons at ends are also moved with the "blue" ones.

42

• Assign gradient to tetrahedron t[±2], considering the direction of
the current amino acid AA[±2]

 (There is no succeeding amino acid because they are the endpoints.)

AA[0]
AA[-2]

AA[2]

AA[-1]

AA[1]

Folding with trans. & rot. (Step 5)

Tetrahedron seq. {t[i]}Protein {AA[i]}

t[0]

t[-2]

t[2]

t[-1]

t[1]

Spatial
alignment

x1x2x4

Grad.

“D” (=-1)

2nd deri.

x1x2x4 “D” (=-1)

x2x3x4 “U” (=+1)

x1x2x3 “U” (=-1)

x1x3x4 “D” (=-1)

Next, assign gradient to tetrahedron ...

Note that there is no succeeding ...

The "blue" tetrahedrons are assigned gradient (, I.e. bold edge,) as shown
on the left. And their values are shown on the right. For example, t[2] is
assigned gradient x1x3x4 and the 2nd derivative becomes "D" since the
gradient value changes.

43

• Translate tetrahedron t[±2] to the position of AA[±2]

AA[0]
AA[-2]

AA[2]

AA[-1]

AA[1]

Folding with trans. & rot. (Step 6)

Tetrahedron seq. {t[i]}Protein {AA[i]}

t[0]

t[-2]

t[2]

t[-1]

t[1]

Spatial
alignment

x1x2x4

Grad.

“D” (=-1)

2nd deri.

x1x2x4 “D” (=-1)

x2x3x4 “U” (=+1)

x1x2x3 “U” (=-1)

x1x3x4 “D” (=-1)

Then, translate tetrahedron ...

The "blue" tetrahedrons are now at the position of AA[2] and AA[-2] as
shown on the left.

44

• Now we obtain a {D, U}-valued sequence which describes the
shape of protein {AA[i]}

t[-2]

t[2]

Folding with trans. & rot. (Result)

Folded tetra.
seq. {t[i]} Binary seq.

“2nd
derivative”

U stands for +1

D stands for -1

Protein {AA[i]}

AA[-2]
AA[2]

UDDUD

And now we obtain ...

That is, the protein on the left is approximated by a folded tetrahedron
sequence as shown in the middle. Then, the 2nd derivative of the
tetrahedron sequence gives the binary sequence on the right.

45

• In the same way, we obtain a {D, U}-valued sequence which
decribes the shape of a-helix:

t[-6]

t[6]

Folding with trans. & rot. (α-helix)

Folded tetra.
seq. {t[i]} Binary seq.

“2nd
derivative”

a-helix {AA[i]}

AA[-6]

AA[6]

DDDDDUDUDDDDDAA[0] t[0]

• What the sequence describes is the “local structure” around AA[0]
 ⇒ Compute short {D, U}-valued sequence around each AA[i].
 Maybe length five is enough!

In the same way, ...

The alpha-helix on the left is approximated by a folded tetrahedron
sequence as shown in the middle. Then, the 2nd derivative of the
tetrahedron sequence gives the binary sequence on the right.

Note that the four letters at both ends are all D.

That is, what the sequence describe ...

And it seems reasonable to compute short ...,

where maybe length five is enough, considering the above example.

46

Notation: 5-tile code

• One letter representation of {D, U}-valued sequence of length five:
 (Step1) Compute the binary number of each D/U-sequence,
 where D and U correspond to 0 and 1 respectively
 (Step2) Assign numerals if the value is < 10, else alphabets

D/U-
sequence

DDDDD

DDDDU

DDDUD

· · ·

DUDDU

DUDUD

DUDUU

· · ·

UUDUU

· · ·

00000

00001

00010

···

01001

01010

01011

···

11011

···

Binary
number

0

1

2

···

9

A

B

···

R

···

One letter
repre.

Before computing {D, U}-valued sequence of length five around each amino
acid, let me explain the notation used.

One letter representation of ... is defined as follows.

(Step 1) ...

For example, the sequence of all D corresponds to binary number 00000
and its value is 0. DDDDU corresponds to binary number 00001 and its
value is 1. And so on.

(Step 2) ...

For example, DUDDU corresponds to binary number 01001, whose value is
9. Thus numeral "9" is assigned. On the other hand, DUDUD corresponds to
binary number 01010, whose value is 10. Then, alphabet "A" is assigned.

47

5-tile encoding

• To describe local structure, we consider all fragments of five
amino acids, which we call “5-tile encoding”:

a-helix

AA[-6]

AA[6]

AA[0]

5-tile
code

-

-

DUDUD (A)

· · ·

DUDUD (A)

DUDUD (A)

· · ·

DUDUD (A)

-

-

AA[6]

AA[5]

AA[4]

···

AA[1]

AA[0]

···

AA[-4]

AA[-5]

AA[-6]

Not available

Not available

AA[6]-AA[5]-AA[4]-AA[3]-AA[2]

···

AA[3]-AA[2]-AA[1]-AA[0]-AA[-1]

AA[2]-AA[1]-AA[0]-AA[-1]-AA[-2]

···

AA[-2]-AA[-3]-AA[-4]-AA[-5]-AA[-6]

Not available

Not available

AA fragment

- - AAAAAAAAA - -

Example (5-tile code of a-helix)

Now to describe ...

For example, the "5-tile code" of the alpha-helix considered before is
computed as follows.

First of all, the two amino acids at both ends have no corresponding amino
acid fragment. And "5-tile code" is computed for amino acids from AA[4]
thorough AA[-4].

As shown on thr right, amino acid AA[4] corresponds to the fragment from
AA[6] through AA[2] and its 5-tile code is DUDUD, which is denoted by
"A". In the same way, amino acid AA[1] corresponds to the fragment from
AA[3] through AA[-1] and its 5-tile code is also DUDUD, which is denoted
by "A". And so on.

Finally, we obtain the sequence of straight "A" of length nine as 5-tile code
of the alpha-helix, where hyphens stand for the two amino acids at both
ends.

48

Example: 5-tile code of protein

• 5-tile code of transferase (1RKL):

Transferase (1RKL)

MISDEQLNSLAITFGIVMMTLIVIYHAVDSTMSPKN

kink

--000RQAAAAAAAHAAAAAAAAAAAB0R00000--

Amino acids:

5-tile codes:

turn

N-cap

helix

turn

C-cap

strand

turn

N-cap

helix

C-cap

kink

⇔ 0 (= DDDDD)

⇔ R (= UUDUU)

⇔ Q (= UUDUD)

⇔ A (= DUDUD)

⇔ B (=DUDUU)

⇔ H (= UDDDU)

strand

This slide shows an example of the "5-tile code" of an actual protein,
transferase (1RKL).

Its amino acid sequence is given above and the 5-tile code is shown below.

The figure shows the structural features of the protein and spatial
arrangement of the 5-tile codes, where small blue balls stand for 5-tile
code "0", large yellow balls for "R", ...

As you see, "strand" corresponds to "0", "turn" corresponds to "R", ...

That is, "5-tile code" could capture local features of the protein precisely.

49

⇔ 0 (= DDDDD)

⇔ R (= UUDUU)

⇔ Q (= UUDUD)

⇔ A (= DUDUD)

⇔ B (=DUDUU)

⇔ H (= UDDDU)

Summary of application

• 5-tile encoding: Local structure of spatial broken lines could be
encoded using a tetrahedron sequence of length five

UDDUD

• Application: 5-tile encoding of local protein structure

strand

turn

N-cap

helix

C-cap

kink

This is the summary of application.

Firstly, 5-tile encoding is proposed. Local structure ...

For example, the spatial broken line shown on the left is approximated by a
folded tetrahedron sequence as shown in the middle. And we obain the
sequence of UDDUD as its code.

Secondly, as an application, 5-tile encoding of ... is proposed.

For example, the local structure of a protein is encoded as shown below. In
particular, "5-tile code" could distinguish local features, such as strand,
turn, ..., from each other.

50

⇔ 0 (= DDDDD)

⇔ R (= UUDUU)

⇔ Q (= UUDUD)

⇔ A (= DUDUD)

⇔ B (=DUDUU)

⇔ H (= UDDDU)

Summary of application

• 5-tile encoding: Local structure of spatial broken lines could be
encoded using a tetrahedron sequence of length five

UDDUD

• Application: 5-tile encoding of local protein structure

strand

turn

N-cap

helix

C-cap

kink

Thank you!

Slides & manuscript of the talk are available from
 http://www.genocript.com

Thank you for your attention.

