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Algebra of affine closed trajectories of
triangles

- Introduction to Hetero numbers (1) -

Oct. 21, 2007

Naoto Morikawa

This talk is about “algebra of affine closed trajectories of triangles” and
is an introduction to the 2-dim’l hetero numbers.
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Outline of the talk

• Introduction and motivation

• Lattices, cones, and roofs

• Surface decomposition by conjugate roof

• Algebra of roofs and hetero numbers

This is the outline of the talk.

First, I’m going to make a brief introduction and give a motivation.
Next, I’ll talk about the lattices, cones, and roofs.
Then, I’ll talk about the surface decomposition by conjugate roof.
Finally, I’ll describe the algebra of roofs and give the definition of 2-dim’l
hetero numbers.
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Project the surface
on a hyperplane

that is ⊥ (-1, -1, -1)

Flow of triangles

Flow of triangles

Divide facets of
3-cube [0,1]3 into

triangles

Division on 3-cube

Pile up the 3-cubes
along the direction

of (-1, -1, -1)

“Peaks & valleys”

(0,0,0)

(1,0,0) (0,0,1)

(0,1,0)

(-∞, -∞, -∞)

(+∞, +∞, +∞)

trajectory

The slide shows how flows of triangles are obtained.

First, divide facets of 3-cube [0,1]3 into triangles. As shown on the left,
each facet is divided into two triangles.

Next, pile up the 3-cubes along the direction of (-1, -1, -1). That is, they
are piled up from (+∞, +∞, +∞) toward  (-∞, -∞, -∞).
And we obtain “peaks and valleys” of 3-cubes.
Note that the division of facets makes up a division of the surface of the
“peaks and valleys.”

Finally, project the surface on a hyperplane that is perpendicular to
vector (-1, -1, -1).
Then, as shown on the right, we obtain a flow of triangles which is
induced by the division of the surface.
For example, the blue slant triangles on the “peaks and valleys” specify
the blue trajectory of flat triangles on the hyperplane.
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Example: affine closed trajectory

• “Peaks and valleys” defined by three peaks, (l, m, n), (l+1, m-1, n), and
(l+2, m+1, n-1) ∈ Z3, specifies a closed trajectory of length 10.

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

[NOTE] Affine closed trajectory := closed trajectory specified by a single
         set of “peaks and valleys”

(l, m, n)(l+1, m-1, n)

(l+2, m+1, n-1)

Closed trajectory

This is an example of affine closed trajectories of triangles.

An affine closed trajectory is a closed trajectory specified by a single set
of “peaks and valleys.”
And the “peaks and valleys” defined by three peaks, …

As shown in the figure, the blue slant triangles induce a closed
trajectory of flat triangles on the hyperplane.
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Motivation of the talk

“Standard” lattice

which is generated by

(1, 0, 0),

(0, 1, 0),

(0, 0, 1)

“Conjugate” lattice

which is generated by

(0, 1, 1),

(1, 0, 1),

(1, 1, 0)

“Peaks & valleys”
of conj. lattice

• One could specify any affine closed trajectory by “peaks and valleys”
of the ”conjugate” lattice.

• As a result, we could describe “fusion and fission” of closed
trajectories as addition of the corresponding “conj. peaks & valleys”

This slide shows the motivation of the talk.

That is, as shown in the middle figure, one could specify any affine …

As a result, we could describe “fusion and fission” of …

Shown on the left is the standard” lattice which is generated by (1, 0, 0),
(0, 1, 0), and (0, 0, 1).
And we have used the lattice to define flow of triangles in the previous
slide.

On the other hand, as shown on the right, “conjugate” lattice is the
lattice which is generated by (0, 1, 1), (1, 0, 1), and (1, 1, 0).
And, as shown in the middle figure, only the slant triangles which
induce the closed trajectory on the hyperplane are just covered by
“peaks and valleys” of the conjugate lattice which is colored blue.
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(l, m, n)(l+1, m-1, n)

(l+2, m+1, n-1)

• We denote point (l, m, n) ∈ R3 by monomial x1
lx2

mx3
n of three

indeterminates x1, x2, and x3:

Notation: monomial representation

x1
lx2

mx3
nx1

l+1x2
m-1x3

n

x1
l+2x2

m+1x3
n-1

x1

x2

x3(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Before giving the definition of the conjugate cone associated with an
affine closed trajectory, let me explain the notation used.

In this talk, we denote point (l, m, n) …
For example, the “peaks and valleys” on the left is described as shown
on the right.
And, vectors (1, 0, 0), (0, 0, 1), and (0,1,0) are denoted by x1, x2, and x3
respectively.
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Outline of the talk

• Introduction and motivation

• Lattices, cones, and roofs

• Surface decomposition by conjugate roof

• Algebra of roofs and hetero numbers

Now, let me talk about lattices, cones, and roofs.
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“Peaks & valleys”
of conj. lattice

Standard lattice

• [Def’n] The standard lattice L3 is the lattice which is generated by x1,
x2, and x3

• The standard lattice L3 is used to specify a flow of triangles

“Standard” lattice

which is generated by

x1 i.e. (1, 0, 0),

x2 i.e. (0, 1, 0),

x3 i.e. (0, 0, 1)

“Conjugate” lattice

which is generated by

(0, 1, 1),

(1, 0, 1),

(1, 1, 0)

Let’s start with the standard lattice.

As shown in the figure, the standard lattice L3 is the lattice which is …
And the standard lattice L3 is used to …
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Standard cone (“tangent” cone)

“Standard” lattice

which is generated by

x1 = (1, 0, 0),

x2 = (0, 1, 0),

x3 = (0, 0, 1)

“Conjugate” lattice

which is generated by

(0, 1, 1),

(1, 0, 1),

(1, 1, 0)

Cone { x1
lx2

mx3
n, x1

l+1x2
m-1x3

n, x1
l+2x2

m+1x3
n-1 }

x1

x2

x3

• [Def’n] For A = { x1
lix2

mix3
ni } ⊂ L3,

        Cone A := { (l, m, n) ⊂ R3 :
                      l ≥ li, m ≥ mi, n ≥ ni for some x1

lix2
mix3

ni ∈ A }
• Cone A specifies “peaks and valleys” of the standard lattice
    generated by A

x1
lx2

mx3
nx1

l+1x2
m-1x3

n

x1
l+2x2

m+1x3
n-1

Standard cone is a cone of the standard lattice defined as follows.
That is, for a subset A of standard lattice L3, Cone A is a set of points (l,
m, n) in R3 which satisfy …

Cone A specifies “peaks and valleys” of the standard lattice …

For example, as shown below, the “peaks and valleys” of the previous
example is Cone { x1

lx2
mx3

n, x1
l+1x2

m-1x3
n, x1

l+2x2
m+1x3

n-1}.

Since standard cones specify the “gradient” of slant triangles, we could
call them “tangent” cone.
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Conjugate lattice

“Standard” lattice

which is generated by

x1 = (1, 0, 0),

x2 = (0, 1, 0),

x3 = (0, 0, 1)

• [Def’n] The conjugate lattice L3
∗ is the lattice which is generated

by x2x3, x1x3, and x1x2

• The conjugate lattice L3
∗ is used to specify the “boundary” of a

trajectory

“Conjugate” lattice

which is generated by

y1 := x2x3 i.e. (0, 1, 1),

y2 := x1x3 i.e. (1, 0, 1),

y3 := x1x2 i.e. (1, 1, 0)

x1

x2

x3

L3 ∼ L3
∗ + xiL3

∗

Note that the conjugate
lattice is “sparse”:

y1
y2

y3

Conjugate lattice is defines as follows.

That is, as shown on the right , the conjugate lattice L3
∗ is the lattice …

And the conjugate lattice L3
∗ is used to … as we will see later.

Note that, as shown in the left, the conjugate lattice is “sparse” and it
covers only the white points of the standard lattice.
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Conjugate cone (“cotangent” cone)

“Standard” lattice

which is generated by

x1 = (1, 0, 0),

x2 = (0, 1, 0),

x3 = (0, 0, 1)

“Conjugate” lattice

which is generated by

x2x3 = (0, 1, 1),

x1x3 = (1, 0, 1),

x1x2 = (1, 1, 0)

x1
lx2

mx3
nx1

l+1x2
m-1x3

n

x1
l+2x2

m+1x3
n-1

Cone∗ { x1
lx2

mx3
n, x1

l+1x2
m-1x3

n, x1
l+2x2

m+1x3
n-1 }

• [Def’n] For A = { x1
lix2

mix3
ni } ⊂ L3,

        Cone∗ A := { (l, m, n) ⊂ R3 : -l+m+n ≥ -li+mi+ni, l-m+n ≥ li-mi+ni,
                       l+m-n ≥ li+mi-ni, for some x1

lix2
mix3

ni ∈ A }

y1

y2

y3

• Cone∗ A specifies “peaks and valleys” of the conjugate lattice
    generated by A

Note that x1
lx2

mx3
n = y1

(-l+m+n)/2y2
(l-m+n)/2y3

(l+m-n)/2.

Conjugate cone is a cone of the conjugate lattice defined as follows.
That is, for subset A of standard lattice L3, Cone∗ A is a set of points (l,
m, n) in R3 which satisfy …
Note that point (l, m, n) of the standard lattice corresponds to point ((-
l+m+n)/2, (l-m+n)/2, (l+m-n)/2) of the conjugate lattice.

As shown below, Cone∗ A specifies “peaks and valleys” of the
conjugate lattice …

Since conjugate cones specify the “boundary” of slant triangles, we
could call them “cotangent” cone.
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Conjugate roof

“Standard” lattice

which is generated by

x1 = (1, 0, 0),

x2 = (0, 1, 0),

x3 = (0, 0, 1)

“Conjugate” lattice

which is generated by

x2x3 = (0, 1, 1),

x1x3 = (1, 0, 1),

x1x2 = (1, 1, 0)

• [Def’n] For A ⊂ L3,
        Roof∗ A := { (m+n, l+n, l+m) ⊂ R3 : y1

l+Ny2
my3

n, y1
ly2

m+Ny3
n,

                       y1
ly2

my3
n+N ∈ Cone∗ A for some N > 0 }

y1

y2

y3

• Roof∗ A is obtained by putting as many cubes as possible on Cone∗ A

Note that x1
m+nx2

l+nx3
l+m = y1

ly2
my3

n.

x1
l-1x2

m-1x3
n-1

Roof∗ { x1
lx2

mx3
n, x1

l+1x2
m-1x3

n, x1
l+2x2

m+1x3
n-1 }

( = Cone∗ { x1
l-1x2

m-1x3
n-1 } )

To specify affine closed trajectories, a particular type of conjugate
cones, called “conjugate roof”, are used.

For subset A of standard lattice L3, Roof∗ A is a set of points (m+n. l+n.
l+m) in R3 which satisfy …
Note that point m+n. l+n. l+m) of the standard lattice corresponds to
point (l, m, n) of the conjugate lattice.

As shown below, Roof∗ A is obtained by putting as …
In this case, two cubes are put on Cone∗ A to obtain Roof∗ A which is
equal to Cone∗ { x1

l-1x2
m-1x3

n-1 }.
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Extended conjugate cone

“Standard” lattice

which is generated by

x1 = (1, 0, 0),

x2 = (0, 1, 0),

x3 = (0, 0, 1)

“Conjugate” lattice

which is generated by

x2x3 = (0, 1, 1),

x1x3 = (1, 0, 1),

x1x2 = (1, 1, 0)

x1
lx2

mx3
nx1

l+1x2
m-1x3

n

x1
l+2x2

m+1x3
n-1

• [Def’n] For A ⊂ L3,
        XCone∗ A := Cone∗ A ∪ Cone∗ x1A ∪ Cone∗ x2A ∪ Cone∗ x3A,
    where xiA = { xia | a ∈ A }
• Since the conjugate lattice L3

∗ is “sparse” (L3 ∼ L3
∗ + xiL3

∗), one should
use extended cones to capture all the “boundary” of trajectories

y1

y2

y3

XCone∗ { x1
lx2

mx3
n, x1

l+1x2
m-1x3

n, x1
l+2x2

m+1x3
n-1 }

Finally, let me give the definition of extended conjugate cone, which is
mainly used in the 3-dim’l case.

For subset A of standard lattice L3, XCone∗ A is a union of four
conjugate cones Cone∗ A, Cone∗ x1A, Cone∗ x1A, and Cone∗ x1A.
Since the conjugate lattice is sparse …

As shown below, the extended conjugate cone has more peaks than
the normal conjugate cone.
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Extended conjugate roof

“Standard” lattice

which is generated by

x1 = (1, 0, 0),

x2 = (0, 1, 0),

x3 = (0, 0, 1)

“Conjugate” lattice

which is generated by

x2x3 = (0, 1, 1),

x1x3 = (1, 0, 1),

x1x2 = (1, 1, 0)

x1
lx2

m-1x3
n

x1
l-1x2

m-1x3
n-1

x1
l+1x2

m-1x3
n-1 y1

y2

y3

• [Def’n] For A ⊂ L3,
        XRoof∗ A := the conjugate roof of XCone∗ A

• XRoof∗ A is obtained by putting as many cubes as possible on XCone∗ A

XRoof∗ { x1
lx2

mx3
n, x1

l+1x2
m-1x3

n, x1
l+2x2

m+1x3
n-1 }

( = XCone∗ { x1
l-1x2

m-1x3
n-1, x1

l+1x2
m-1x3

n-1, x1
lx2

mx3
n-1 , x1

lx2
m-1x3

n } )

x1
lx2

mx3
n-1

Extended conjugate roof is defined in the same way as normal
conjugate cones.

For subset A of standard lattice L3, XRoof∗ A is …

As shown below, XRoof∗ A is obtained by putting as …
In this case, eight cubes are put on XCone∗ A to obtain XRoof∗ A which
is equal to XCone∗ { x1

l-1x2
m-1x3

n-1, …}.
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Summary of lattices, cones, and roofs

Roof∗ {p1, p2, p3}

• Standard cone Cone A is defined to specify the “gradient” of triangles.
    ==> Cone A is used to specify a flow of tetrahedrons
• Conjugate roof Roof∗ A is defined to specify the “boundary” of a traj.
    ==> Roof∗ A (or XRoof∗ A) is used to specify a trajectory

Cone {p1, p2, p3} XRoof∗ {p1, p2, p3}

p1

p2

p3

This is the summary of lattices, cones, and roofs.

Firstly, standard cone Cone A is defined to …
As shown on the left, Cone A is used to …

Secondly, conjugate roof Roof∗ A is defined to …
As we will see later, Roof∗ A (or XRoof∗ A ) is used to …

Shown in the middle is the conjugate roof associated with Cone {p1, p2,
p3} of the left figure.
And shown on the right is the extended conjugate roof associated with
the cone.
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Outline of the talk

• Introduction and motivation

• Lattices, cones, and roofs

• Surface decomposition by conjugate roof

• Algebra of roofs and hetero numbers

Next, let me talk about surface decomposition by conjugate roof.
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Notation : triangles on Cone A

“Slant” triangles

• We denote the triangle of vertices a (=x1
lx2

mx3
n), axi, axixj by a[xixj]

• We denote the projection of a[xixj] on the hyperplane by |a[xixj]|

a

a[x1x2]

x1

x2

x3

ax1

ax1x2

a

a[x2x1]

ax2

ax1x2

“Flat” triangles

|a[x1x2]| |a[x2x1]|

π π(ax1x2)

π(ax1)
π(a)

π(ax1x2)
π(ax2)

π(a)

Cone A (A ⊂ L3)

Before giving the definition of the decomposition, let me explain the
notation used.

As shown on the left, we denote the triangle of …
For example, vertices a, ax1, and ax1x2 form slant triangle a[x1x2].

And, as shown on the right, we denote the projection of …
For example, vertices π(a), π(ax1),  and π(ax1x2),form flat triangle
|a[x1x2]|,
where π is the projection of  “peaks and valleys” onto the hyperplane.
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Surface decomposition by Roof∗ A

Cone A & Roof∗ A

• Slant triangles on Cone A (A ⊂ L3) are classified into three kinds:
    - In(Cone A, Roof∗ A) := the slant triangles under Roof∗ A
    - Bd(Cone A, Roof∗ A) := the slant triangles partially covered by Roof∗ A
    - Out(Cone A, Roof∗ A) := the slant triangles above Roof∗ A

“In” “Out”

This slide shows the surface decomposition by conjugate roof Roof∗ A.

Slant triangles on standard cone Cone A are classified into three kinds:
In(Cone A, Roof∗ A) is the set of all the slant triangles under Roof∗ A,
Bd(Cone A, Roof∗ A) is the set of all the slant triangles partially covered
by Roof∗ A,
And In(Cone A, Roof∗ A) is the set of all the slant triangles above Roof∗
A.

Shown below is the decomposition of slant triangles on Cone A of the
middle figure, where the conjugate roof Roof∗ A is colored blue.
Shown on the left are the slant triangles under Roof∗ A and their image
on the hyperplane.
Shown on the right are the slant triangles above Roof∗ A and their
image on the hyperplane.
In this example, there are no slant triangles partially covered by Roof∗
A.
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Surface decomposition (cont’d)

• Slant triangles on Cone A (A ⊂ L3) are classified into three kinds:
    - In(Cone A, Roof∗ A) := the slant triangles under Roof∗ A
    - Bd(Cone A, Roof∗ A) := the slant triangles partially covered by Roof∗ A
    - Out(Cone A, Roof∗ A) := the slant triangles above Roof∗ A

“In”
Above Roof∗ A

Under Roof∗ A

Surface of
Roof∗ A

All vertices are on or
under the surface of

Roof∗ A

• We denote the projection on the hyperplane by In(A):
      In(A) := { |a[xixj]| | a[xixj] ∈ In(Cone A, Roof∗ A) }

In(A)

Firstly, let’s examine more details about the “In” triangles.
In(Cone A, Roof∗ A) is the set of all the slant triangles under Roof∗ A.
And we denote the projection on the hyperplane by In(A).
That is, In(A) is the set of all the flat triangles whose corresponding
slant triangle belongs to In(Cone A, Roof∗ A), as shown on the left.

Shown in the middle figure is the relative position of slant triangles and
the conjugate roof Roof∗ A.
The blue plane denotes a surface of Roof∗ A and arrows indicate the
direction of “above” and “under” the surface.

And, as shown on the right, In(Cone A, Roof∗ A) consists of the slant
triangles whose vertices are on or under the surface of Roof∗ A.
For example, the left figure (of the figure ) shows the bottom triangle
(colored red), whose top vertex is on the surface and the others are
under the surface.
The middle figure shows the second triangle from the bottom, whose
second vertex is on the surface and the others are under the surface.
The right figure shows the third triangle from the bottom, whose second
vertex is on the surface and the others are under the surface.



20

Above Roof∗ A

Under Roof∗ A

Surface decomposition (cont’d)

• Slant triangles on Cone A (A ⊂ L3) are classified into three kinds:
    - In(Cone A, Roof∗ A) := the slant triangles under Roof∗ A
    - Bd(Cone A, Roof∗ A) := the slant triangles partially covered by Roof∗ A
    - Out(Cone A, Roof∗ A) := the slant triangles above Roof∗ A

“Boundary”

Surface of
Roof∗ A

Top vertex is above and
bottom vertex is under
the surface of Roof∗ A

Bd(Cone A, Roof∗ A)

 = ∅

in the above example

Secondly, let’s examine more details about the “Boundary” triangles.

Bd(Cone A, Roof∗ A) is the set of all the slant triangles partially covered
by Roof∗ A.

And Bd(Cone A, Roof∗ A) is empty in the above example.

As shown on the right, Bd(Cone A, Roof∗ A) consists of the slant
triangles whose top vertex is above and bottom vertex is under the
surface of Roof∗ A.
The figure shows the fourth triangle (colored red) from the bottom,
whose top vertex is above the surface and bottom vertex is under the
surface.
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“Out”
Above Roof∗ A

Under Roof∗ A

Surface decomposition (cont’d)

• Slant triangles on Cone A (A ⊂ L3) are classified into three kinds:
    - In(Cone A, Roof∗ A) := the slant triangles under Roof∗ A
    - Bd(Cone A, Roof∗ A) := the slant triangles partially covered by Roof∗ A
    - Out(Cone A, Roof∗ A) := the slant triangles above Roof∗ A

Surface of
Roof∗ A

All vertices are on or
above the surface of

Roof∗ A

Finally, let’s examine more details about the “Out” triangles.

Out(Cone A, Roof∗ A) is the set of all the slant triangles above Roof∗ A.

As shown on the right, Out(Cone A, Roof∗ A) consists of the slant
triangles whose vertices are on or above the surface of Roof∗ A.
For example, the left figure (of the figure ) shows the third triangle
(colored red) from the top, whose top and bottom vertices are on the
surface and the other is above the surface.
The middle figure shows the second triangle from the top, whose
second vertex is on the surface and the others are above the surface.
The right figure shows the top triangle, whose bottom vertex is on the
surface and the others are above the surface.



22

Surface decomposition (summary)

• Slant triangles on Cone A (A ⊂ L3) are classified into three kinds:
    - In(Cone A, Roof∗ A) := the slant triangles under Roof∗ A
    - Bd(Cone A, Roof∗ A) := the slant triangles partially covered by Roof∗ A
    - Out(Cone A, Roof∗ A) := the slant triangles above Roof∗ A

In OutBd
Another example

This is the summary of the surface decomposition.

As we see, slant triangles on Cone A …

Shown on the left is another example, where blue, yellow, and white flat
triangles indicate the area of “In”, “Boundary”, and “Out.”

Shown on the right is a schematic diagram of the relative position of
slant triangles and the conjugate roof.
Slant triangles belong to “In” until the top vertex crosses the surface of
the conjugate roof.
Then, it belongs to “Boundary”. All the triangles above the “Boundary”
triangle belong to “Out.”
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Decomposition & Trajectory

• Given A ⊂ L3. If Bd(Cone A, Roof∗ A) = ∅, then no trajectory defined
by Cone A crosses the boundary of “In” and “Out”. In particular,

        - In(Cone A, Roof∗ A) <=> all the closed trajectories
        - Out(Cone A, Roof∗ A) <=> all the open trajectories

Bd = ∅ Bd = ∅Bd ≠ ∅

Now let me show the relation between the decomposition and
trajectories of triangles.

Given subset A of standard lattice L3. If Bd(Cone A, Roof∗ A) is empty,
then …
In particular,
In(Cone A, Roof∗ A) consists of all the closed trajectories, and
In(Cone A, Roof∗ A) consists of all the open trajectories.

In the left example, there is no “Boundary” triangle and “In” triangles
form the only closed trajectory of length six.
In the middle example, there are two “Boundary” triangles (colored
yellow) and “In” triangles are part of a open trajectory.
In the right example, there is no “Boundary” triangle and “In” triangles
form the only closed trajectory of length ten.
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Decomposition & Trajectory (cont’d)

• Extended conjugate roof XRoof∗ A gives a “larger neighborhood”:
        - In(Cone A, XRoof∗ A) includes all the closed trajectories
        - Usually, Bd(Cone A, XRoof∗ A) ≠ ∅
• XRoof∗ A is mainly used in the 3-dim’l case to capture all the closed

trajectories which visit at least one of the peaks of Cone A

Bd ≠ ∅ Bd ≠ ∅Bd ≠ ∅

This slide shows the decomposition by extended conjugate roof.

We could use extended conjugate roofs, instead of normal conjugate
roofs.
And extended conjugate roof XRoof∗ A gives …

XRoof∗ A is mainly used in …

Shown below are the same examples of the previous slide.
In the left example, “In” triangles form the only closed trajectory and
part of two open trajectories.
In the middle example, “In” triangles form part of two open trajectory.
In the right example, “In” triangles form the only closed trajectory and
part of three open trajectories.
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Outline of the talk

• Introduction and motivation

• Lattices, cones, and roofs

• Surface decomposition by conjugate roof

• Algebra of roofs and hetero numbers

Finally, let me talk about algebra of roofs and hetero numbers.
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Standard roof

• [Def’n] For A ⊂ L3,
        Roof A := { (l, m, n) ⊂ R3 : (l + N, m, n), (l, m + N, n),
                      (l, m, n + N) ∈ Cone A for some N > 0 }
• Roof A is obtained by putting as many cubes as possible on Cone A

x1
lx2

mx3
n

Roof { x1
l+1x2

mx3
n, x1

lx2
m+2x3

n, x1
lx2

mx3
n+1 }

( = Cone { x1
lx2

mx3
n } )

x1

x2

x3

x1
l+1x2

mx3
n x1

lx2
mx3

n+1

x1
lx2

m+2x3
n

Cone A Roof A

Firstly, let’s consider another type of roof, that is, standard roof.

And here is the definition.
For subset A of standard lattice L3, Roof A is a set of points (l, m, n) in
R3 which satisfy …
As shown below, Roof∗ A is obtained by putting as …

Shown on the left is a standard cone generated by three peaks,
x1

l+1x2
mx3

n, x1
lx2

m+2x3
n, and x1

lx2
mx3

n+1 .
And, by putting two cubes on the cone, we obtain Roof { … }, shown on
the right, which is equal to Cone { x1

lx2
mx3

n }.



27

Addition of roofs

• [Def’n] For A and B ⊂ L3,
            Roof A + Roof B := Roof A∪B
• In general, InR(A) ∪ InR(B) ≠ InR(A∪B),
    where InR(X) := { |a[xixj]| | a[xixj] ∈ In(Roof X, Roof∗ X) }

Roof A + Roof B Roof A + Roof B + Roof C Roof A + Roof B + Roof D

InR(A)

InR(B)
InR(D)InR(C)

InR(A)

InR(B)

InR(A)

InR(B)
InR(A∪B) InR(A∪B∪C) InR(D∪A∪B)

∗ Recall that In(X) := { |a[xixj]| | a[xixj] ∈ In(Cone X, Roof∗ X) }.

Then, addition of roofs is defined as follows.

For subset A and B of standard lattice L3, Roof A + Roof B is  …

As shown below, in general, InR(A)∪InR(B) is not equal to InR(A∪B),
where InR(X) is the projection of In(Roof X, XRoof∗ X) on the
hyperplane.

Shown on the left is addition of two roofs Roof A and Roof B, where
closed trajectories In(A) and In(B) break upon addition.
The black arrow indicates the cube put on to obtain the roof.
Shown in the middle is addition of three roofs Roof A, Roof B and Cone
C, where closed trajectories In(A) , In(B), and In(C) fuse into a single
closed trajectory In(A∪B∪C) upon addition.
Shown on the right is addition of another triplet of roofs Roof A, Roof B
and Cone D, where closed trajectories In(A) , In(B), and In(C) collapse
into a shorter closed trajectory In(A∪B∪D) upon addition.

Addition of conjugate roofs is also defined similarly.
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≡

Equivalence relation on cones

• [Def’n] For A and B ⊂ L3, we introduce an equiv. relation on cones:

    where g(X) denotes the peaks of Cone X. The equivalence class of
Cone A is denoted by [Cone A]R

• Then, In(A) = In(B) if [Cone A]R = [Cone B]R

where A ={ x1, x3, x1x2
2x3

-2, x1
-1x2x3, x1

-1x2
3
 }

≡

Cone A∪{x1x2x3
-2}Cone A Cone A∪{x2 ,x1x2x3

-2}

Roof A = Roof B,
Roof∗ g(A) = Roof∗ g(B)

Cone A ≡ Cone B <=>

Next, let’s consider an equivalence relation on standard cones.

For subset A and B of standard lattice L3, …

Then, as shown below, In(A) is equal to In(B) if …

Shown on the left is the flow defined by Cone A, where A is given
below.
Shown in the middle is the flow defined by another cone which is
obtained by putting one cube (indicated by an arrow) on Cone A.
By the construction, both cones are associated with the same standard
roof.
But their corresponding conjugate roofs, colored blue, are different from
each other, as you see.
Therefore, they are not equivalent and their closed trajectories sweep
different areas on the hyperplane.

On the other hand, shown on the right is the flow defined by anther
cone which is obtained by putting one more cube.
By the construction, this cone is also associated with the same
standard roof.
Moreover, as you see, the right two cones share the same conjugate
cone, colored blue.
Therefore, they are equivalent and their closed trajectories sweep the
same area on the hyperplane.
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=

Addition of [Cone A]R

• [Def’n] For A and B ⊂ L3,
            [Cone A]R + [Cone B]R := [Cone A∪B]R
• If g(A)∪g(B) = g(C), then [Cone A]R + [Cone B]R = [Cone C]R <=>

=

[Cone A]R + [Cone B]R
+ [Cone C]R + [Cone D]R

[Cone A]R + [Cone E]R

Roof A + Roof B = Roof C,
Roof∗ g(A) + Roof∗ g(B) = Roof∗ g(C)

In(D)In(B)
In(A) In(C)

In(E)

In(A)

In(D)

In(F)

[Cone F]R + [Cone D]R

Now, addition of the equivalence classes is defined as follows.

For subset A and B of standard lattice L3, …

Note that, if g(A)∪g(B) = g(C), then [Cone A]R + [Cone B]R = [Cone C]R
if and only if …

Shown on the left is addition of two classes [Cone A]R + [Cone E]R,
where the blue closed trajectories below show the shape of In(A) and
In(E).
Shown in the middle is addition of four classes [Cone A]R + [Cone B]R +
[Cone C]R + [Cone D]R, where the blue trajectories below show the
shape of In(A), In(B), In(C), and In(D).
And shown on the right is addition of two classes [Cone F]R + [Cone
D]R, where the blue trajectories below show the shape of In(D) and
In(F).

As you see, all of them are associated with the same standard roof and
the same conjugate roof.
Thus, they belong to the same equivalent class. In other words, the
equivalence class has three different algebraic expressions.
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Bd = ∅ Bd = ∅Bd ≠ ∅

Hetero Numbers

• [Def’n] Hetero numbers HN are defined as follows:
          HN := { [Cone A]R : A ⊂ L3, Bd(Cone A, Roof∗ A) = ∅ },
          [Cone A]R + [Cone B]R := [Cone A∪B]R
• Recall that, if Bd(Cone A, Roof∗ A) = ∅, then
          In(Cone A, Roof∗ A) <=> all the closed trajectories

Now we could give the definition of hetero numbers.

Hetero numbers HN are defined as …
    HN := …
with addition defined by …
   [Cone A]R + [Cone B]R := …

Recall that …

Shown below are some examples.

In the left example, there is no “Boundary” triangle and the equivalent
class of the cone is a hetero number.
In the middle example, there are two “Boundary” triangles (colored
yellow) and the equivalent class of the cone is not a hetero number.
In the right example, there is no “Boundary” triangle and the equivalent
class of the cone is a hetero number.
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Example: “fusion & fission” of closed traj.s

• For [Cone A]R ∈ HN, the equiv. class gives all the “partitions” of
In(A) into closed trajectories

• In particular, we could describe “fusion and fission” of closed
trajectories as “addition” of the corresponding hetero numbers

[Cone G]R = [Cone A]R + [Cone B]R
               + [Cone C]R + [Cone D]R

[Cone G]R = [Cone A]R + [Cone E]R

[Cone G]R = [Cone F]R + [Cone D]R

Cone G

In(G)

In(G) = In(A)∪In(E)

In(G) = In(A)∪In(B)∪In(C)∪In(D)

In(G) = In(F)∪In(D)

A = {x2
2, x1x3

-1, x1x2x3
-2}, B = {x2x3, x1x2

-1, x1x3
-1}, C = {x2

2, x2x3, x1
-1x2

2x3},
D = {x3

2, x2x3, x1
-1x2x3

2}, E = {x2
2, x3

2, x1x3
-1, x1x2

-1, x1
-1x2

2x3, x1
-1x2x3

2},
F = {x2, x1x3

-1, x1x2
-1, x1x2x3

-2, x1
-1x2

2x3}, G = A∪B∪C∪D

[Cone G]R

In(B)

In(C)

In(E)
In(A)

In(D)

In(F)

Finally, as an example of hetero numbers, let’s consider “fusion and
fission” of closed trajectories.

For hetero number [Cone A]R, the cones in the equivalent class gives
all the …
In particular, we could describe …, as shown below.

Shown on the left is Cone G and its associated conjugate roof (colored
blue).
They specify the shape of In(G) on the hyperplane. The contents of G
and others are given below.

Shown on the right is all the cones in the equivalent class of Cone G.
As you see, there are three cones.

The first one is associated with two closed trajectories which have
origin in Cone A and Cone E respectively.
Thus, it corresponds to [Cone A]R + [Cone E]R.
And the partition of In(G) into two closed trajectories, In(A) and in(E), is
expressed as addition [Cone G]R = [Cone A]R + [Cone E]R.

The second one is associated with four closed trajectories which have
origin in Cone A , Cone B, Cone C,and Cone D respectively.
Thus, it corresponds to [Cone A]R + [Cone B]R + [Cone C]R + [Cone D]R.
And the partition of In(G) into four closed trajectories, In(A), In(B), In(C),
and in(D), is expressed as addition [Cone G]R = [Cone A]R + [Cone B]R
+ [Cone C]R + [Cone D]R.

And the last one is associated with two closed trajectories which have
origin in Cone F and Cone D respectively.
Thus, it corresponds to [Cone F]R + [Cone D]R.
And the partition of In(G) into two closed trajectories, In(F) and in(D), is
expressed as addition [Cone G]R = [Cone F]R + [Cone D]R.
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Example: “fusion & fission” of closed traj.s

• For [Cone A]R ∈ HN, the equiv. class gives all the “partitions” of
In(A) into closed trajectories

• In particular, we could describe “fusion and fission” of closed
trajectories as “addition” of the corresponding hetero numbers

[Cone G]R = [Cone A]R + [Cone B]R
               + [Cone C]R + [Cone D]R

[Cone G]R = [Cone A]R + [Cone E]R

[Cone G]R = [Cone F]R + [Cone D]R

Cone G

In(G)

In(G) = In(A)∪In(E)

In(G) = In(A)∪In(B)∪In(C)∪In(D)

In(G) = In(F)∪In(D)

A = {x2
2, x1x3

-1, x1x2x3
-2}, B = {x2x3, x1x2

-1, x1x3
-1}, C = {x2

2, x2x3, x1
-1x2

2x3},
D = {x3

2, x2x3, x1
-1x2x3

2}, E = {x2
2, x3

2, x1x3
-1, x1x2

-1, x1
-1x2

2x3, x1
-1x2x3

2},
F = {x2, x1x3

-1, x1x2
-1, x1x2x3

-2, x1
-1x2

2x3}, G = A∪B∪C∪D

[Cone G]R

In(B)

In(C)

In(E)
In(A)

In(D)

In(F)

Thank you!

Finally, as an example of hetero numbers, let’s consider “fusion and
fission” of closed trajectories.

For hetero number [Cone A]R, the cones in the equivalent class gives
all the …
In particular, we could describe …, as shown below.

Shown on the left is Cone G and its associated conjugate roof (colored
blue).
They specify the shape of In(G) on the hyperplane. The contents of G
and others are given below.

Shown on the right is all the cones in the equivalent class of Cone G.
As you see, there are three cones.

The first one is associated with two closed trajectories which have
origin in Cone A and Cone E respectively.
Thus, it corresponds to [Cone A]R + [Cone E]R.
And the partition of In(G) into two closed trajectories, In(A) and in(E), is
expressed as addition [Cone G]R = [Cone A]R + [Cone E]R.

The second one is associated with four closed trajectories which have
origin in Cone A , Cone B, Cone C,and Cone D respectively.
Thus, it corresponds to [Cone A]R + [Cone B]R + [Cone C]R + [Cone D]R.
And the partition of In(G) into four closed trajectories, In(A), In(B), In(C),
and in(D), is expressed as addition [Cone G]R = [Cone A]R + [Cone B]R
+ [Cone C]R + [Cone D]R.

And the last one is associated with two closed trajectories which have
origin in Cone F and Cone D respectively.
Thus, it corresponds to [Cone F]R + [Cone D]R.
And the partition of In(G) into two closed trajectories, In(F) and in(D), is
expressed as addition [Cone G]R = [Cone F]R + [Cone D]R.


